Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
medrxiv; 2024.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2024.02.12.24302698

RESUMEN

Using longitudinal health records from 45.7 million adults in England followed for a year, our study compared the incidence of thrombotic and cardiovascular complications after first, second and booster doses of brands and combinations of COVID-19 vaccines used during the first two years of the UK vaccination program with the incidence before or without the corresponding vaccination. The incidence of common arterial thrombotic events (mainly acute myocardial infarction and ischaemic stroke) was generally lower after each vaccine dose, brand and combination. Similarly, the incidence of common venous thrombotic events, (mainly pulmonary embolism and lower limb deep venous thrombosis) was lower after vaccination. There was a higher incidence of previously reported rare harms after vaccination: vaccine-induced thrombotic thrombocytopenia after first ChAdOx1 vaccination, and myocarditis and pericarditis after first, second and transiently after booster mRNA vaccination (BNT-162b2 and mRNA- 1273) These findings support the wide uptake of future COVID-19 vaccination programs.


Asunto(s)
Embolia Pulmonar , Infarto del Miocardio , Tromboembolia Venosa , Pericarditis , Enfermedades Cardiovasculares , Infarto Cerebral , Trombosis , Miocarditis , COVID-19 , Trombosis de la Vena , Púrpura Trombocitopénica Trombótica
2.
medrxiv; 2023.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2023.08.07.23293778

RESUMEN

Background Type 2 diabetes (T2DM) incidence is increased after diagnosis of COVID-19. The impact of vaccination on this increase, for how long it persists, and the effect of COVID-19 on other types of diabetes remain unclear. Methods With NHS England approval, we studied diabetes incidence following COVID-19 diagnosis in pre-vaccination (N=15,211,471, January 2020-December 2021), vaccinated (N =11,822,640), and unvaccinated (N=2,851,183) cohorts (June-December 2021), using linked electronic health records. We estimated adjusted hazard ratios (aHRs) comparing diabetes incidence post-COVID-19 diagnosis with incidence before or without diagnosis up to 102 weeks post-diagnosis. Results were stratified by COVID-19 severity (hospitalised/non-hospitalised) and diabetes type. Findings In the pre-vaccination cohort, aHRS for T2DM incidence after COVID-19 (compared to before or without diagnosis) declined from 3.01 (95% CI: 2.76,3.28) in weeks 1-4 to 1.24 (1.12,1.38) in weeks 53-102. aHRS were higher in unvaccinated than vaccinated people (4.86 (3.69,6.41)) versus 1.42 (1.24,1.62) in weeks 1-4) and for hospitalised COVID-19 (pre-vaccination cohort 21.1 (18.8,23.7) in weeks 1-4 declining to 2.04 (1.65,2.51) in weeks 52-102), than non-hospitalised COVID-19 (1.45 (1.27,1.64) in weeks 1-4, 1.10 (0.98,1.23) in weeks 52-102). T2DM persisted for 4 months after COVID-19 for ~73% of those diagnosed. Patterns were similar for Type 1 diabetes, though excess incidence did not persist beyond a year post-COVID-19. Interpretation Elevated T2DM incidence after COVID-19 is greater, and persists longer, in hospitalised than non-hospitalised people. It is markedly less apparent post-vaccination. Testing for T2DM after severe COVID-19 and promotion of vaccination are important tools in addressing this public health problem.


Asunto(s)
COVID-19 , Diabetes Mellitus Tipo 2 , Diabetes Mellitus
3.
medrxiv; 2023.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2023.06.23.23291776

RESUMEN

Despite reports of post-COVID-19 syndromes (long COVID) are rising, clinically coded long COVID cases are incomplete in electronic health records. It is unclear how patient characteristics may be associated with clinically coded long COVID. With the approval of NHS England, we undertook a cohort study using electronic health records within the OpenSAFELY-TPP platform in England, to study patient characteristics associated with clinically coded long COVID from 29 January 2020 to 31 March 2022. We estimated age-sex adjusted hazard ratios and fully adjusted hazard ratios for coded long COVID. Patient characteristics included demographic factors, and health behavioural and clinical factors. Among 17,986,419 adults, 36,886 (0.21%) were clinically coded with long COVID. Patient characteristics associated with coded long COVID included female sex, younger age (under 60 years), obesity, living in less deprived areas, ever smoking, greater consultation frequency, and history of diagnosed asthma, mental health conditions, pre-pandemic post-viral fatigue, or psoriasis. The strength of these associations was attenuated following two-dose vaccination compared to before vaccination. The incidence of coded long COVID was higher after hospitalised than non-hospitalised COVID-19. These results should be interpreted with caution given that long COVID was likely under-recorded in electronic health records.


Asunto(s)
Asma , Psoriasis , Obesidad , COVID-19 , Fatiga
4.
medrxiv; 2022.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2022.07.29.22278186

RESUMEN

Introduction The COVID-19 booster vaccination programme in England used both BNT162b2 and mRNA-1273 vaccines. Direct comparisons of the effectiveness against severe COVID-19 of these two vaccines for boosting have not been made in trials or observational data. Methods On behalf of NHS England, we used the OpenSAFELY-TPP database to match adult recipients of each vaccine type on date of vaccination, primary vaccine course, age, and other characteristics. Recipients were eligible if boosted between 29 October 2021 and 31 January 2022, and followed up for 12 weeks. Outcomes were positive SARS-CoV-2 test, COVID-19 hospitalisation, and COVID-19 death. We estimated the cumulative incidence of each outcome, and quantified comparative effectiveness using risk differences (RD) and hazard ratios (HRs). Results 1,528,431 people were matched in each group, contributing a total 23,150,504 person-weeks of follow-up. The 12-week risks per 1,000 people of positive SARS-CoV-2 test were 103.2 (95%CI 102.4 to 104.0) for BNT162b2 and 96.0 (95.2 to 96.8) for mRNA-1273: the HR comparing mRNA-1273 with BNT162b2 was 0.92 (95%CI 0.91 to 0.92). For COVID-19 hospitalisations the 12-week risks per 1,000 were 0.65 (95%CI 0.56 to 0.75) and 0.44 (0.36 to 0.54): HR 0.67 (95%CI 0.58 to 0.78). COVID-19 deaths were rare: the 12-week risks per 1,000 were 0.03 (95%CI 0.02 to 0.06) and 0.01 (0.01 to 0.02): HR 1.23 (95%CI 0.59 to 2.56). Comparative effectiveness was generally similar within subgroups. Conclusion Booster vaccination with mRNA-1273 COVID-19 vaccine was more effective than BNT162b2 in preventing SARS-CoV-2 infection and COVID-19 hospitalisation during the first 12 weeks after vaccination.


Asunto(s)
COVID-19 , Muerte
5.
medrxiv; 2022.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2022.06.20.22275994

RESUMEN

Multiple studies across global populations have established the primary symptoms characterising COVID-19 (Coronavirus Disease 2019) and long COVID. However, as symptoms may also occur in the absence of COVID-19, a lack of appropriate controls has often meant that specificity of symptoms to acute COVID-19 or long COVID, and the extent and length of time for which they are elevated after COVID-19, could not be examined. We analysed individual symptom prevalences and characterised patterns of COVID-19 and long COVID symptoms across nine UK longitudinal studies, totalling over 42,000 participants. Conducting latent class analyses separately in three groups ('no COVID-19', 'COVID-19 in last 12 weeks', 'COVID-19 > 12 weeks ago'), the data did not support the presence of more than two distinct symptom patterns, representing high and low symptom burden, in each group. Comparing the high symptom burden classes between the 'COVID-19 in last 12 week,' and 'no COVID-19' groups we identified symptoms characteristic of acute COVID-19, including loss of taste and smell, fatigue, cough, shortness of breath and muscle pains or aches. Comparing the high symptom burden classes between the 'COVID-19 > 12 weeks ago' and 'no COVID-19' groups we identified symptoms characteristic of long COVID, including fatigue, shortness of breath, muscle pain or aches, difficulty concentrating and chest tightness. The identified symptom patterns among individuals with COVID-19 > 12 weeks ago were strongly associated with self-reported length of time unable to function as normal due to COVID-19 symptoms, suggesting that the symptom pattern identified corresponds to long COVID. Building the evidence base regarding typical long COVID symptoms will improve diagnosis of this condition and the ability to elicit underlying biological mechanisms, leading to better patient access to treatment and services.


Asunto(s)
Disnea , Dolor en el Pecho , Mialgia , COVID-19 , Fatiga
6.
medrxiv; 2022.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2022.03.06.21267462

RESUMEN

We describe our analyses of data from over 52 million people in England and Wales, representing near-complete coverage of the relevant population, to assess the risk of myocarditis and pericarditis following COVID-19 vaccination. A self-controlled case series (SCCS) design has previously reported increased risk of myocarditis after first doses of ChAdOx1, BNT162b2, and mRNA-1273 vaccinations and after second doses of the mRNA COVID-19 vaccinations in England. Here, we use a cohort design to estimate hazard ratios for hospitalised or fatal myocarditis/pericarditis and excess events after first and second doses of BNT162b2 and ChAdOx1 vaccinations. SCCS and cohort designs are subject to different assumptions and biases and therefore provide the opportunity for triangulation of evidence. In contrast to the findings from the SCCS approach previously reported for England, we found evidence of lower incidence of hospitalised or fatal myocarditis/pericarditis after first dose ChAdOx1 and BNT162b2 vaccination.


Asunto(s)
COVID-19 , Miocarditis , Pericarditis
7.
medrxiv; 2021.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2021.11.22.21266512

RESUMEN

Importance: The long-term effects of COVID-19 on the incidence of vascular diseases are unclear. Objective: To quantify the association between time since diagnosis of COVID-19 and vascular disease, overall and by age, sex, ethnicity, and pre-existing disease. Design: Cohort study based on population-wide linked electronic health records, with follow up from January 1st to December 7th 2020. Setting and participants: Adults registered with an NHS general practice in England or Wales and alive on January 1st 2020. Exposures: Time since diagnosis of COVID-19 (categorised as 0-6 days, 1-2 weeks, 3-4, 5-8, 9-12, 13-26 and 27-49 weeks since diagnosis), with and without hospitalisation within 28 days of diagnosis. Main outcomes and measures: Primary outcomes were arterial thromboses (mainly acute myocardial infarction and ischaemic stroke) and venous thromboembolic events (VTE, mainly pulmonary embolism and lower limb deep vein thrombosis). We also studied other vascular events (transient ischaemic attack, haemorrhagic stroke, heart failure and angina). Hazard ratios were adjusted for demographic characteristics, previous disease diagnoses, comorbidities and medications. Results: Among 48 million adults, 130,930 were and 1,315,471 were not hospitalised within 28 days of COVID-19. In England, there were 259,742 first arterial thromboses and 60,066 first VTE during 41.6 million person-years follow-up. Adjusted hazard ratios (aHRs) for first arterial thrombosis compared with no COVID-19 declined rapidly from 21.7 (95% CI 21.0-22.4) to 3.87 (3.58-4.19) in weeks 1 and 2 after COVID-19, 2.80 (2.61-3.01) during weeks 3-4 then to 1.34 (1.21-1.48) during weeks 27-49. aHRs for first VTE declined from 33.2 (31.3-35.2) and 8.52 (7.59-9.58) in weeks 1 and 2 to 7.95 (7.28-8.68) and 4.26 (3.86-4.69) during weeks 3-4 and 5-8, then 2.20 (1.99-2.44) and 1.80 (1.50-2.17) during weeks 13-26 and 27-49 respectively. aHRs were higher, for longer after diagnosis, after hospitalised than non-hospitalised COVID-19. aHRs were also higher among people of Black and Asian than White ethnicity and among people without than with a previous event. Across the whole population estimated increases in risk of arterial thromboses and VTEs were 2.5% and 0.6% respectively 49 weeks after COVID-19, corresponding to 7,197 and 3,517 additional events respectively after 1.4 million COVID-19 diagnoses. Conclusions and Relevance: High rates of vascular disease early after COVID-19 diagnosis decline more rapidly for arterial thromboses than VTEs but rates remain elevated up to 49 weeks after COVID-19. These results support continued policies to avoid COVID-19 infection with effective COVID-19 vaccines and use of secondary preventive agents in high-risk patients.


Asunto(s)
Embolia Pulmonar , Infarto del Miocardio , Ataque Isquémico Transitorio , Insuficiencia Cardíaca , Tromboembolia Venosa , Angina de Pecho , Enfermedades Vasculares , Infarto Cerebral , Trombosis , COVID-19 , Accidente Cerebrovascular , Trombosis de la Vena
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA